

Feuchtebestimmer

Modernste Methoden der Feuchtigkeitsbestimmung

Feuchtebestimmer der Serie 3Y

Höchste Funktionalität für professionelle Trocknungsvorgänge und Feuchtigkeitsanalyse.

- Farbiger 5,7" Touchscreen
- Interaktives Menü
- · Drahtlose Kommunikation
- System zur Überwachung und Justierung der Trocknungskammer (GMP)
- Konformität mit Anforderungen des GLP Systems
- Datenbanken (Produkte, Wägungen, Kunden, Trocknungsprogramme, Druckbelege aus Trocknungsvorgängen, Prüfung und Statistik der Druckbelege aus Trocknungsvorgängen)
- Dynamische Prüfung der Masse der Probe (Bargraph)
- Optimierung der Trocknungsparameter (Test)
- · Visualisierung des Trocknungsvorgangs
- Statistik (Trend der Feuchtigkeit der Probe in Zeit)
- Druckbelege, Protokolle (PCL Standard)
- · Mehrsprachiges Menü
- Großer Anwendungsbereich (Industrie, Labore, Hochschulen, Forschung- und Entwicklungseinrichtungen)

Hauptfenster

- Information über die gewählte Betriebsart und das verwendete Profil
- B Information über den eingeloggten Bediener
- Bereich für Datum, Uhrzeit, Information über Verbindungen, Ladestand der Akkus etc.
- Symbol des Status der Nivellierung der Waage
- Anzeigefeld der Messungen des Feuchtebestimmers
- Bargraph der Belastung
- Bargraph der Kontrolle der Masse der Probe
- Definierbares Feld für zusätzliche Informationen
- Auswahl des Trocknungsprofils / der Temperatur
- Automatischer Abschluss des Trocknungsvorgangs
- 🚺 Intervall für Drucken der Druckbelege
- Temperatur und Zeit der Analyse
- Definitionsfeld der Trocknungskammer (offen / geschlossen / trocknen)
- Feld der Funktionsschaltflächen
- Sensoren zum berührungslosen Bedienen

Unvergleichbare Effektivität und Effizienz.

Arbeitsorganisation mit Hilfe der Datenbanken. Historie der Veränderung des Feuchtigkeitsgehaltes in der Probe.

Einfacher Datenaustausch zwischen Geräten. Datenschutz und Zugriffskontrolle. Vollständig konfigurierbares Menü.

Feuchtebestimmer der Serie X2

Professionelle Ausführung für höchste Qualität der Trocknung und maximalen Bedienkomfort.

- · Farbiger 5" Touchscreen
- · Beliebiges Einrichten und Anordnung der Menüelemente
- · Drahtlose Kommunikation
- System zur Überwachung und Justierung der Trocknungskammer (GMP)
- · Konformität mit Anforderungen des GLP Systems
- Datenbanken (Produkte, Kunden, Bediener, Verpackungen, Trocknungsprogramme, Druckbelege aus Trocknungsvorgängen)
- · Dynamische Prüfung der Masse der Probe (Bargraph)
- · Optimierung der Trocknungsparameter (Test)
- · Visualisierung des Trocknungsvorgangs
- · Statistik (Trend der Feuchtigkeit der Probe in Zeit)
- · Druckbelege, Protokolle (PCL Standard)
- · Mehrsprachiges Menü
- Großer Anwendungsbereich (Industrie, Labore, Hochschulen, Forschung- und Entwicklungseinrichtungen)

Hauptfenster

- Aufrufen des Hauptfensters
- B Zurück (zurück zum vorigen Fenster)
- Tariertaste
- Ausschalten des Displays
- Taste Enter / Drucken
- Nullstellungstaste
- Statuszeile (Betriebsart, metrologische Daten des Feuchtebestimmers)
- 🚹 Feld des Ergebnisses der Trocknung / Wägung
- Informationsfeld
- Funktionsschaltfläche zum Aufrufen der Funktionen und Einstellungen der Waage
- Menü mit Einstellungen der aktuellen Betriebsart
- Sensoren zum berührungslosen Bedienen
- Auswahl des Trocknungsprofils / der Temperatur
- Automatischer Abschluss des Trocknungsvorgangs
- 🕕 Intervall für Drucken der Druckbelege
- P Temperatur und Zeit der Analyse
- R Definitionsfeld der Trocknungskammer (offen / geschlossen / trocknen)

Übersichtlichkeit der Informationen. Einfache und intuitive Bedienung, das Menü kann an die individuellen Bedürfnisse des Bedieners angepasst werden. Automatisches Öffnen und Schließen der Kammer ohne Berühren der Waage (nur in Serie MA X2.A).

Feuchtebestimmer der Serie R

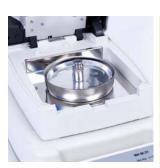
Fortschrittliche Lösungen in Trocknungsvorgängen und Feuchtigkeitsanalysen.

- · LCD-Display
- · Staffelstruktur des Menüs
- · Drahtlose Kommunikation (Option)
- System zur Überwachung und Justierung der Trocknungskammer (GMP)
- · Konformität mit Anforderungen des GLP Systems
- Datenbanken (Bediener, Produkte, Programme, Tara)
- Optimierung der Trocknungsparameter (Test)
- Visualisierung des Trocknungsvorgangs (%M, %R, %D)
- Druckbelege, Protokolle (PCL Standard)
- · Mehrsprachiges Menü
- Großer Anwendungsbereich (Industrie, Labore, Hochschulen, Forschung- und Entwicklungseinrichtungen)

Hauptfenster

- Trocknungszeit
- B Trocknungstemperatur
- Openitionsfeld der Trocknungskammer (offen / geschlossen / trocknen)
- Ergebnis Feuchtigkeit der Probe
- Automatischer Abschluss des Trocknungsvorgangs
- Trocknungsprofil
- Einheit %M, %D, %R
- Informationszeile
- Druckbelege aus durchgeführten Trocknungsvorgängen
- Zugriff auf Datenbanken
- 🕜 Ändern des Profils und der Trocknungstemperatur
- Auswahl der Probe aus der Datenbank


Kompakte Abmessungen und eine homogene Konstruktion. Einfache und intuitive Bedienung. Direkter Zugriff zu Druckbelegen und Datenbanken der Produkte. Einfacher Datenaustausch zwischen Geräten. Universell einsetzbar an verschiedenen Arbeitsplätzen.



Konstruktion und Bauweise

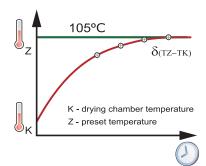
Genauigkeit der Messungen der Masse in allen Temperaturbereichen

Der Feuchtebestimmer besteht aus einer Präzisionswaage und einer integrierten Trocknungskammer. Das Wägemodul mit hoher Ablesbarkeit führt schnelle und genaue Massemessungen der Probe unabhängig vom thermischen Zustand durch. Die Stabilisierung des Moduls wird durch die Anwendung eines speziellen Algorithmus zum Steuern des Betriebs der Halogenlampen erreicht.

Zum genauen Bestimmen der Masse der Probe ist eine Justierung mit Hilfe eines externen Prüfgewichts mit entsprechender Genauigkeitsklasse erforderlich.

Date	2016.03.12
Time	14:06:27
Balance type	MA 3Y
Balance ID	365661
Operator	Admin
Level status	Yes
Nominal mass	50 g
Current mass	50.0001 g
Difference	0.0001 g
Temperature	22 °C
Signature	

Die Genauigkeit der Waage bestätigt ein Protokoll, in dem die Größe der Abweichung dargestellt wird.


Stabilität der Trocknungstemperatur

Die Stabilität der Trocknungstemperatur sichert ein Heizelement (IR Strahler) angeschlossen über eine Rückkopplung an einen Temperatursensor. Für den ordnungsgemäßen Betrieb dieses Systems ist eine Justierung erforderlich, die während des Herstellungsprozesses durchgeführt wird.

Der Strahler als Wärmequelle ist bei der Analyse der Feuchtigkeit verschiedener Materialien wirksam: Pulver, Flüssigkeiten, Pasten, zähflüssige Substanzen, feste Körper etc.

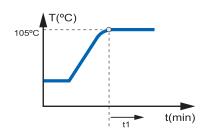
Die Skalierung der Trocknungstemperatur erfolgt durch einen Vergleich und Korrektur der Temperaturmessungen des Feuchtebestimmers mit den Messungen des Kontrollthermometers in drei Punkten. Während des Tests wird der Kontrollthermometer an Stelle der Waagschale platziert.

Während der Nutzung wird die Richtigkeit der Temperaturmessung (GLP) in festgelegten Zeiträumen geprüft.

Ein spezieller Algorithmus steuert den Betrieb der Heizelemente und sorgt für eine entsprechende Trocknungstemperatur. RADWAG hat für seine Produkte einen Algorithmus zum Sicherstellen von Geschwindigkeit und Genauigkeit des Betriebs unabhängig von der Dauer der Analyse entwickelt.

Trocknungstemperatur

Wärmequellen -Arten und Einsatzbereich


Halogen IRS

Infrarot kurz λ = \sim 1,2 μm vor allem Konvektion, Flächenheizung.

Anwendung:

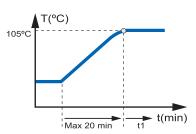
Pulver, zähflüssige Körper, Flüssigkeiten.

Erreichen der Solltemperatur

Standardprofil

Anwendung:

Feste, körnige und zähflüssige Proben. Die Temperatur steigt bis zum Zeitpunkt des Erreichens des Sollwertes. **99% der Fälle.**



IRM Strahler

Infrarot mittel $\lambda = \sim 3.0 \ \mu m$ Konvektion und Strahlung, Erhitzen von tieferen Schichten

Anwendung:

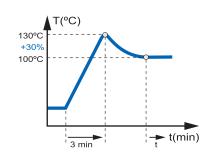
für die Mehrheit der Proben mit einer zähflüssigen und flüssigen Struktur, Pulver, zerkleinerte Festkörper.

Profil sanft

Anwendung:

Wird verwendet, wenn ein zu schneller Anstieg der Temperatur außer Wasser andere Bestandteile der Probe entfernt.

Die Geschwindigkeit des Temperaturanstiegs ist regelbar.

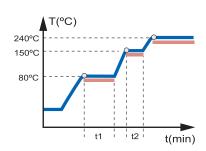


IRL Strahler

Infrarot lang $\lambda = \sim 5.0 \ \mu m$ vor allem Strahlung, Volumenerhitzen der Probe.

Anwendung:

Körper mit einer festen Konsistenz und feste Körper.


Profil schnell

Anwendung:

Für Proben mit einem großen Anteil der Feuchtigkeit. Nach Übersteuern sinkt die Temperatur bis zum Erreichen des Sollwertes.

Dies schließt die Senkung der Temperatur durch die Dampfwärme aus.

Eine der Wärmequellen in Feuchtebestimmern ist ein Infrarotstrahler, der in einer Schleife der Rückkopplung mit einem Temperatursensor betrieben wird. Dies sorgt für Stabilität der thermischen Bedingungen während der Analyse. Die von RADWAG entwickelte Methode der dynamischen Steuerung der Temperatur in der Trocknungskammer ist ein Element, das eine kurze Analysezeit und Wiederholbarkeit der Trocknungsreihen sichert.

Profil Stufen

Anwendung:

Zum Trocknen von Mineralien. Aus der Probe wird das auf der Oberfläche befindliche und chemisch gebundene Wasser entfernt.

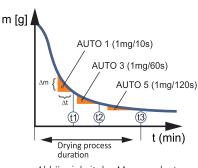
Ermöglich eine Analyse der Probe bei mehreren Temperaturen.

Trocknungsmethoden

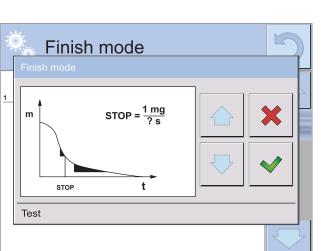
Proben Typen und Aufbereiten

Die Größe der Probe und ihre Aufbereitung muss eine einheitliche Struktur, eine kurze Dauer der Trocknung, eine gute Wiederholbarkeit der Messreihe und die Übereinstimmung der Ergebnisse mit Referenzergebnissen (normative Methode) sichern.

Abschlusskriterien der Analyse

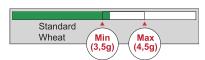

Die Funktion TEST analysiert Veränderungen der Masse der Probe während Trocknen, was dem Bediener 5 Möglichkeiten des Abschlusses des Trocknungsvorgangs ermöglicht.

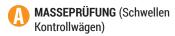
Auszuwählen ist ein Abschlusskriterium, bei dem die erhaltene Feuchtigkeit der Probe dem Referenzwert am nächsten liegt.

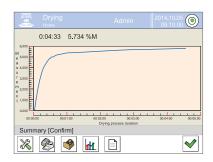

Der Bediener kann auch ein anderes Abschlusskriterium des Trocknungsvorgangs auswählen: Zeit, manuell oder definiert, d.h. das am besten an die Eigenschaften der Probe angepasstes Kriterium.

Initial mass 0:00:10 0:00:20 0:08:08 Result	2.7548 g 0.1503% M 0.6258% M Auto switch off Auto 1 11.4789% M
0:11:05 Result	Auto switch off Auto 2 Auto 2 11.9058% M
0:13:55 Result	Auto switch off Auto 3 12.0502% M
0:15:20 Result	Auto switch off Auto 4 Auto 4 12.0858% M
0:18:10 Result	Auto switch off Auto 5 Auto 5 12.1526% M

Diagnoseausdruck der Funktion TEST.

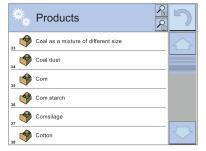

Das Ergebnis der Feuchtigkeit hängt von Größe der Anfangsmasse der Probe ab - die Masse muss optimal vor Beginn der Tests angepasst werden.


Optimierung des Trocknungsvorgangs


Automatische Prüfung der Masse der Probe

Optimale Ergebnisse im Trocknungsvorgang hängen von der Menge und Masse der Probe ab. Bei einer zu großen Masse ist eine lange Trocknungszeit erforderlich. Bei einer zu kleinen Menge der Probe wird keine Wiederholbarkeit der Ergebnisse erreicht. Eine Prüfung der Masse der Probe ist deswegen unentbehrlich.




DIAGRAMM (dynamische Trocknungskurve)

PROBEN (Bezeichnung, Code, Zielmasse, Toleranz etc.)

Veränderung der Struktur der Probe

Während der Trocknungsvorgänge können ungünstige Erscheinungen in der Struktur der Probe auftreten. Sie verursachen eine Streuung der Messungen und Fehler bei der tatsächlichen Bewertung der Feuchtigkeit der Probe.

Zur Auswahl der besten Trocknungsmethode für die gegebene Probe sind Tests zum Optimieren der Größe, Trocknungstemperatur und des Abschlusskriteriums der Analyse notwendig.

Verkrustung

Auf der Oberfläche der Probe entsteht eine undurchlässige Schicht, die das Verdunsten der Feuchtigkeit aus dem Inneren verhindert. Das Ergebnis der Analyse wird gegenüber dem Referenzwert herabgesetzt.

Verbrennung

Ist Resultat
einer zu hohen
Trocknungstemperatur
und verursacht die
Veränderung der Farbe
der Probe.
Bei dieser Erscheinung
ist die Feuchtigkeit der
Probe größer, als der
Referenzwert.

Absorption

Proben mit einer dunklen
Farbe nehmen mehr
Wärme auf, deswegen
werden etwas niedrigere
Trocknungstemperaturen
verwendet.
Zur richtigen Auswahl
sind Tests zum
Entwickeln der Methodik
erforderlich.

GLP im Trocknungsvorgang

Prüfen der Trocknungstemperatur

Der über die Feuchtigkeit der Probe entscheidende Faktor ist die Trocknungstemperatur. Die Prüfung der Trocknungstemperatur wird nach einem angenommenen Zeitplan für die entsprechende Trocknungstemperatur durchgeführt.

Temper	ature test	
Start time	2016.01.30	13:57:05
Balance type		MA 3Y
Balance ID		1352
Adjustment kit no.		489/13
Preset temperatur	e	120°C
Target temperatur	e	119 ℃
Measured tempera	ature	121 ℃
Permissible error		+/-3°C
Status		OK

Der Test wird mit Hilfe eines speziellen Kontrollthermometers durchgeführt.

Profil

Der Test wird immer für das Standardprofil durchgeführt, da dieses Profil bei den meisten Analysen der Feuchtigkeit verwendet wird.

Temperatur

Der Test wird für die eingestellte Solltemperatur durchgeführt.

Toleranz

Die maximale, zulässige Abweichung während der Trocknung der Probe.

Setnummer

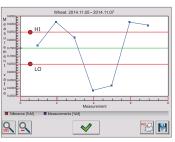
Der Begriff steht für die Seriennummer des Kontrollthermometers.

Die Dauer des Stabilitätstests und der Genauigkeit der Trocknungstemperatur beträgt nur 8 Minuten!

Druckbelege und Statistiken

Druckbeleg aus dem Trocknungsvorgang

Die Feuchtebestimmer von RADWAG ermöglichen das Erstellen von vom den Bediener definierbaren Druckbelegen. Ergebnisse der Analysen, Zusammenfassungen etc. können auf einen beliebigen Bürodrucker ausgedruckt werden (PCL).


Der Druckbeleg besteht aus drei Bereichen: Kopfzeile (A), Daten (B) und Fußzeile (C). Jeder Bereich kann vom Bediener definiert werden.

Statistik zum Trocknungsvorgang

Die Ergebnisse der Analyse der Feuchtigkeit derselben Probe werden zum Bestimmen der Veränderungen ihrer Feuchtigkeit in einem Zeitraum (Trend) genutzt. Das Diagramm des Trends wird automatisch berechnet. Die Berechnungen der Veränderung der Feuchtigkeit sind notwendig, wenn die Produktion und Kontrolle fortlaufend durchgeführt werden. Die Daten werden in Produktionssteuerungssystemen zum Ermitteln der optimalen Feuchtigkeit der Probe genutzt, das vor dem Verpacken des fertigen Produktes erforderlich ist.

Zum Erstellen des Trenddiagrammes muss in der Datenbank der Produkte die Referenzfeuchtigkeit der Probe sowie die zulässige Toleranz beim Bestimmen der Feuchtigkeit definiert werden.

Statistik - Trend der Veränderungen der Feuchtigkeit im Zeitraum, automatische Berechnung für jedes Produkt.

	_	Drying	
		Date	05.03.2016
	A	Time	6:32:18
		Operator	Admin
		Product	Prod-01
		Program	MAR-1
		Drying profile	Standard
		Drying profile parameters	90 ℃
		First I	
		Finish mode	Manual
	L	Start mass	0.674 g
		0.00.20	
		0:00:30	
		0:01:00	
C		0:01:30	
		0:02:00	
		0:02:30	
	L	0:03:00	
	Г		
		Status	Completed
	6	Drying time	0:03:00
		End mass	0.499 g
		Result	25.964% M

Beispiel eines einfachen Druckbelegs der Waage MA R.

	Dı	ying
Г	Start date	2016.03.28
	Start time	11:34:44
	Operator	Admin
	Product	Corn
	Drying mode	Corn-PRG01
	Drying mode	Standard
	Drying mode para	
	Auto switch-off me	
	Finish mode paran	
	Printout interval	0:00:30
	Start mass	0.590 g
	5tart 111a33	0.570 g
	Date and time	2016.03.28 11:35:14
	Drying time	0:00:30
	Product	Corn
	Current result	5.085% M
	0:00:30	5.085% M
	Humidity content	5.085% M
	Dry mass content	94.915% D
	Humid / Dry	5.357% R
	Tare	0.007 q
	Gross	0.567 g
	Set temperature	0.307 g 100 °C
	Current temperature	
	current temperatu	16 99 C
	Date and time	2016.03.28 11:35:44
	Drying time	0:01:00
	Current result	7.795% M
	Date and time	2016.03.28 11:39:14
	Drying time	0:04:30
	Current result	14.237% M
	Status	Completed
	End date	2016.03.28
	End time	11:39:22
	Drying time	0:04:38
	Operator	Admin
	Product	Corn
	End mass	0.506 g
	Humidity content	14.237% M
	mannary content	1 T.ZJ/ /0 IVI

Beispiel eines erweiterten Druckbelegs der Waage MA 3Y.

Datenbanken: Verwalten und Bearbeiten

Datenbanken: Ergonomie bei Trocknungsvorgängen

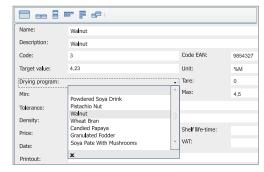
Die Parameter der Trocknungsvorgänge, wie die Temperatur und das Abschlusskriterium werden optimal an jede einzelne Probe angepasst. Es ist umständlich sich schon ein paar der Werte der Proben zu merken. Eine viel bessere Lösung ist das Speichern dieser Informationen in einer Datenbank.

Die Datenbank der Produkte enthält alle Informationen im Zusammenhang mit der Probe:

- Bezeichnung und Beschreibung,
- EAN Code: Suche nach der Probe mit Hilfe eines Scanners,
- Zielwert (%): der bei der automatischen Prüfung der Masse der Probe (Bargraph) sowie der zum Bestimmen der Veränderungen der Feuchtigkeit der Probe im Zeitraum (Trend) genutzte Wert,
- Min, Max: bei der automatischen Prüfung der Masse der Probe (Bargraph) genutzte Wert
- Toleranz: beim Bestimmen der Veränderungen der Feuchtigkeit der Probe im Zeitraum (Trend) genutzte Wert,

Trocknungsprogramm.

Die Datenbank der Trocknungsprogramme enthält alle Informationen im Zusammenhang mit dem Trocknungsvorgang:

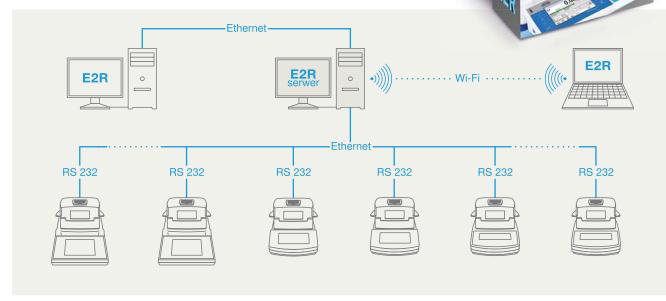

- Bezeichnung, Code,
- Trocknungsprofil, Trocknungstemperatur,
- Abschlusskriterium (automatisch / Zeit / definiert),
- Kontrolle der Startmasse (- - / optional / notwendig),
- Ausrüstung im Zusammenhang mit der Probe (Methodik),
- Vorbereiten der Probe zum Trocknen (Methodik),
- Empfohlene Größe der Probe (Methodik).

Datenbankeditor

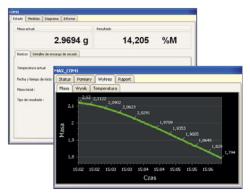
Das Computerprogramm Data Base Editor dient als Unterstützung für Benutzer mit einer großen Anzahl von Proben. Die übersichtliche Struktur des Programms vereinfacht das Entwerfen von Trockungsparametern und anderer Informationen über die Probe. Der Datentransfer vom Programm zum Feuchtebestimmer erfolgt über die Ethernet Schnittstelle (3Y) oder über RS-232 (3Y, R).

Verfügbare Datenbanken: Produkte, Wägungen, Kunden, Trocknungsprogramme, Druckbelege aus Trocknungsvorgängen, Umgebungsbedingungen, Verpackungen, Lager, Druckbelege, universelle Variablen.

Detaillierte Informationen über Produkte.


Export und Import von Daten zwischen Feuchtebestimmern

E2R Online Analyse der Ergebnisse


Datenbanken: Ergonomie bei Trocknungsvorgängen

Herstellungsprozesse, in denen die Feuchtigkeit der Probe einen wesentlichen Parameter darstellt, erfordern schnelle Reaktionen. Ein solcher Stand ist zu erreichen mit Hilfe sog. Waagennetzen, in denen die Feuchtebestimmer MA.3Y und MA.R arbeiten. Jeder Trocknungsvorgang wird unabhängig vom Standort des Arbeitsplatzes online überwacht.

E2R Feuchtebestimmer dient zum Erfassen von Messungen durchgeführt auf RADWAG Feuchtebestimmer, die im Netz im RS-232 Standard und Ethernet arbeiten. Dies ermöglicht das Überwachen und Protokollieren der erfassten Messungen.

Funktionen des Programms: Online Überwachung des Betriebs von Feuchtebestimmern, Konfigurieren von Druckbelegen und Diagrammen, Datenanalyse aus mehreren Trocknungsarbeitsplätzen, Datenschutz.

E2R Feuchtebestimmer ist ein Modul des integrierten Systems zum Verwalten der Wägevorgänge E2R. Das System E2R umfasst viele Programme zur fortlaufenden Überwachung der Waagen und deren Datenbanken, aber auch das vollständige Verwalten des Herstellungsvorgangs und seine Optimierung.

Anwendungen und Applikationen

Anwendungsbereich

Die Analyse der Feuchtigkeit und die Messung der Trockenmasse des Produktes haben eine große Bedeutung in vielen Forschung- und Industriebereichen. Ein breites Spektrum von Anwendungen und die Vielfältigkeit der Struktur der untersuchten Proben erfordern eine individuelle Vorgehensweise mit Substanzen verschiedener Typen.

Milchindustrie

Beispiele der Proben: Käse, Buttermilch, Joghurt, Butter, Milchpulver etc.

Die Proben werden direkt auf der Waagschale oder mit Hilfe von Filtern aus Glasfasern bzw. Quarzsand (größere Verdunstungsfläche) getrocknet.

Obst- und Gemüseindustrie

Beispiele der Proben: getrocknetes Gemüse, Obst und Pilze, Nüsse etc. Die Proben müssen in kleinere Stücke zerschnitten werden (die analysierten Proben dürfen nicht zu dick sein).

Lebensmittelindustrie

Beispiele der Proben: Zucker, Mehl, Nudeln, Gewürze, Gelatine etc.

Bei zähflüssigen Proben muss eine dünne Schicht auf der Waagschale verteilt werden (Quarzsand oder Filter aus Glasfasern können verwendet werden). Sonstige Proben sind zu zerkleinern.

Chemische Industrie

Beispiele der Proben: Emulsionen, Gels und Waschgels, Farben, Folien, Graphit etc.

Bei zähflüssige Proben muss eine dünne Schicht auf der Waagschale verteilt werden (Quarzsand oder Filter aus Glasfasern können verwendet werden). Sonstige Proben sind zu zerkleinern.

Landwirtschaft

Beispiele der Proben:

Körner, Saatgut, Getreide, Heu, Biomasse etc.

Kornproben müssen vor dem Trocknen zerkleinert werden.

PC Software

Die PC-Programme von RADWAG unterstützen den Betrieb von Feuchtebestimmern, erweitern ihre Möglichkeiten und erhöhen ihre Funktionalität.

PW Win

Anschließen der Waage an einen PC, Präsentation der Messungen, Statistiken.

Datenbankeditor

Verwalten von Datenbanken in Waagen 3Y und Terminals PUE 7 und PUE HY.

RAD Kev

Lesen der Daten mit Hilfe einer definierten Taste (Hot Key).

E2R Feuchtebestimmer

Erfassen von Messungen der Feuchtebestimmer im Netzbetrieb.

Zusatzaustattung

- Antivibrationstische,
- Einwegschalen,
- Thermische und Nadeldrucker,
- Barcodescanner (für 3Y),
- Kontrollthermometer,
- Set zum Bestimmen der Durchlässigkeit von Wasserdampf.

Das ganze Angebot finden Sie auf unseren Internetseiten unter www.radwag-waagen.de

Vergleich der Feuchtebestimmer

MA 3Y

Professionelle Feuchtebestimmer der höchsten Klasse für die anspruchsvollsten Anwendungen. Hervorragende Messgenauigkeit und umfangreiche Funktionalität.

Display

Farbiger 5,7 Zoll resistiver Touchscreen.

Datenbanken

10 Datenbanken (Bediener, Produkte, Kunden, Verpackungen, Lager, universelle Variablen, Trocknungsprogramme, Druckbelege aus Wägen, Umgebungsbedingungen).

Libelle

Elektronische Libelle.

Bargraph

Bargraph maximale Belastung, Bargraph Prüfung der Masse der Probe.

Sensoren zum berührungslosen Bedienen

2 unabhängig programmierbare IR Sensoren.

Diagramme

Visualisierung des Trocknungsvorgangs.

MA X2.A

Advanced Feuchtebestimmer für die meisten Anwendungen. Hohe Qualität der Messungen, einfache Bedienung und komfortable Arbeit.

Display

Farbiger 5 Zoll resistiver Touchscreen.

Datenbanken

8 Datenbanken (Bediener, Produkte, Kunden, Verpackungen, Trocknungsprogramme, Druckbelege aus Trocknungsvorgängen, Druckbelege aus Wägen, Umgebungsbedingungen).

Level system

Sphärische Libelle.

Bargraph

Bargraph maximale Belastung.

Sensoren zum berührungslosen Bedienen

2 unabhängig programmierbare IR Sensoren.

Automatische Trocknungskammer

System zum automatischen Öffnen und Schließen der Trocknungskammer (nur bei Feuchtebestimmern MA X2.A).

Prognostizieren des Ergebnisses der Trocknung

Funktion Drying Forecast (max. 6-Fache Verkürzung der Trocknungszeit).

MA R

Universelle und zuverlässige Feuchtebestimmer der Standardklasse. Verbindung hoher Messgenauigkeit und einfacher Bedienung mit soliden Bauweise.

Display

Großer, monochromatischer LCD Display mit Unterleuchtung.

Datenbanken

6 Datenbanken (Bediener, Produkte, Verpackungen, Trocknungsprogramme, Druckbelege aus Trocknungsvorgängen, Druckbelege aus Wägen).

Level system

Sphärische Libelle.

Technische Daten

	8.000	4.000	0.000	0.000	0.000	0.000
	MA 60.3Y	MA 200.3Y	MA 50/1.X2.A	MA 50.X2.A	MA 110.X2.A	MA 210.X2.A
Maximale Belastung [Max]	60 g	200 g	50 g	50 g	110 g	210 g
Ziffernschritt [d]	0,1 mg	1 mg	0,1 mg	1 mg	1 mg	1 mg
Tarierbereich	-60 g	-200 g	-50 g	-50 g	-110 g	-210 g
Maximale Masse der Probe	60 g	200 g	50 g	50 g	110 g	210 g
Ziffernschritt Feuchtigkeit	0,0001 %	0,001 %	0,0001 %	0,001 %	0,001 %	0,001 %
Wiederholbarkeit Feuchtigkeit bei ~2g Probe	0,05 %	0,05%	0,05 %	0,05 %	0,05 %	0,05 %
Wiederholbarkeit Feuchtigkeit bei ~10g Probe	0,01 %	0,01 %	0,01 %	0,01 %	0,01 %	0,01 %
Temperaturbereich Trocknen	max 160°C, max 250°C (Option) max 160°C, max 250°C (Option)		x 250°C (Option)			
Heizelement	Infrarotstrahler, H Metallheizge	Halogen (Option), erät (Option)	ion), Infrarotstrahler, Halogen (Option), Metallheizgerät (Option)		t (Option)	
Leistung Heizelement	400 W		400 W			
Trocknungsart	Standard, schnell, Stufen, sanft		Standard, schnell, Stufen, sanft			
Abschlusskriterium der Trocknung	manuell, automatisch, zeitgesteuert, definiert		manuell, automatisch, zeitgesteuert, definiert			
Berührungslose Bedienung	Programmierbare Sensoren		Programmierbare Sensoren			
Automatisches Öffnen der Trocknungskammer	-		JA			
Zusatzfunktionen	Identifizierung der Probe, Trocknungsdiagramm		Prüfung der Masse der Probe vor Anlauf der Trocknung			
Umgebungstemperatur	+10°C - + 40°C		+10°C - + 40°C			
Waagschale	ø90 mm, h = 8 mm		ø90 mm, h = 8 mm			
Display	Farbiger 5,7" Touchscreen		Farbiger 5" kapazitiver Oberflächen-Touchscreen			
Kommunikationschnittstellen	2×USB-A, RS 232, Ethernet,		USB-A, USB-B, RS 232, Ethernet, Wireless Connection			

Wireless Connection, 4×IN/OUT

MA 50/1.R	MA 50.R	MA 110.R	MA 210.R
50 g	50 g	110 g	210 g
0,1 mg	1 mg	1 mg	1 mg
-50 g	-50 g	-110 g	-210 g
50 g	50 g	110 g	210 g
0,0001 %	0,001 %	0,001 %	0,001 %
0,05 %	0,05 %	0,05 %	0,05 %
0,01 %	0,01 %	0,01 %	0,01 %

max 160°C, max 250°C (Option)

Infrarotstrahler, Halogen (Option), Metallheizgerät (Option)

400 W

Standard, schnell, Stufen, sanft

manuell, automatisch, zeitgesteuert, definiert

Identifizierung der Probe

+10°C - + 40°C

ø90 mm, h = 8 mm

LCD (mit Unterleuchtung)

USB-A, USB-B, RS 232, Wireless Connection (Option)

SCANNEN SIE DEN QR CODE

um die vollständigen, technischen Daten von allen Feuchtebestimmern zu öffnen

